25 research outputs found

    Tropical peatlands and their conservation are important in the context of COVID-19 and potential future (zoonotic) disease pandemics.

    Get PDF
    The COVID-19 pandemic has caused global disruption, with the emergence of this and other pandemics having been linked to habitat encroachment and/or wildlife exploitation. High impacts of COVID-19 are apparent in some countries with large tropical peatland areas, some of which are relatively poorly resourced to tackle disease pandemics. Despite this, no previous investigation has considered tropical peatlands in the context of emerging infectious diseases (EIDs). Here, we review: (i) the potential for future EIDs arising from tropical peatlands; (ii) potential threats to tropical peatland conservation and local communities from COVID-19; and (iii) potential steps to help mitigate these risks. We find that high biodiversity in tropical peat-swamp forests, including presence of many potential vertebrate and invertebrate vectors, combined, in places, with high levels of habitat disruption and wildlife harvesting represent suitable conditions for potential zoonotic EID (re-)emergence. Although impossible to predict precisely, we identify numerous potential threats to tropical peatland conservation and local communities from the COVID-19 pandemic. This includes impacts on public health, with the potential for haze pollution from peatland fires to increase COVID-19 susceptibility a noted concern; and on local economies, livelihoods and food security, where impacts will likely be greater in remote communities with limited/no medical facilities that depend heavily on external trade. Research, training, education, conservation and restoration activities are also being affected, particularly those involving physical groupings and international travel, some of which may result in increased habitat encroachment, wildlife harvesting or fire, and may therefore precipitate longer-term negative impacts, including those relating to disease pandemics. We conclude that sustainable management of tropical peatlands and their wildlife is important for mitigating impacts of the COVID-19 pandemic, and reducing the potential for future zoonotic EID emergence and severity, thus strengthening arguments for their conservation and restoration. To support this, we list seven specific recommendations relating to sustainable management of tropical peatlands in the context of COVID-19/disease pandemics, plus mitigating the current impacts of COVID-19 and reducing potential future zoonotic EID risk in these localities. Our discussion and many of the issues raised should also be relevant for non-tropical peatland areas and in relation to other (pandemic-related) sudden socio-economic shocks that may occur in future

    White Matter Development in Early Puberty: A Longitudinal Volumetric and Diffusion Tensor Imaging Twin Study

    Get PDF
    White matter microstructure and volume show synchronous developmental patterns in children. White matter volume increases considerably during development. Fractional anisotropy, a measure for white matter microstructural directionality, also increases with age. Development of white matter volume and development of white matter microstructure seem to go hand in hand. The extent to which the same or different genetic and/or environmental factors drive these two aspects of white matter maturation is currently unknown. We mapped changes in white matter volume, surface area and diffusion parameters in mono- and dizygotic twins who were scanned at age 9 (203 individuals) and again at age 12 (126 individuals). Over the three-year interval, white matter volume (+6.0%) and surface area (+1.7%) increased, fiber bundles expanded (most pronounced in the left arcuate fasciculus and splenium), and fractional anisotropy increased (+3.0%). Genes influenced white matter volume (heritability ∼85%), surface area (∼85%), and fractional anisotropy (locally 7% to 50%) at both ages. Finally, volumetric white matter growth was negatively correlated with fractional anisotropy increase (r = –0.62) and this relationship was driven by environmental factors. In children who showed the most pronounced white matter growth, fractional anisotropy increased the least and vice-versa. Thus, white matter development in childhood may reflect a process of both expansion and fiber optimization

    A collision avoidance control problem for moving objects and a robot arm

    Get PDF
    We propose the new controls constructed via the second or direct method of Liapunov to solve the collision avoidance control problems for moving objects and a robot arm in the plane. We also explicate the controlling effect by the simulations

    A Solution to the Two-Dimensional Findpath Problem

    No full text
    The 'findpath problem ', a well-known problem in robotics, is the problem of finding a path for a moving solid among other solid obstacles. In this paper, a solution is proposed for the two-dimensional case where two point masses are required to move to designated areas or targets located in the horizontal plane while avoiding moving or stationary planar objects. The main tool used to solve the problem is the 'second or direct method of Liapunov', a powerful mathematical tool usually associated with the stability analysis of nonlinear systems. The theory developed from solving the two-dimensional findpath problem is then applied to the problem of cooperation between two planar robot arms. Computer simulations show the effectiveness of the proposed method

    Collision avoidance in a Two-point System via Liapunov's second method

    No full text
    The geometric problem of finding a path for a moving solid among other solid obstacles is well known in robotics in the area of real-time obstacle avoidance for manipulators and mobile robots. In this paper, a solution to the problem, also known as the findpath problem, is provided via the second or direct method of Liapunov. The method is used to construct control functions for the collision avoidance between two point masses which are required to move to designated areas or targets located in the horizontal plane. Two new results are presented. The first result opens up the possibility of analysing in a more effective manner the dynamics of more than two point masses. The second new result addresses, via generalized control functions, important collision avoidance issues which are (1) improving collision avoidance between objects, (2) obtaining low control inputs for collision avoidance and convergence to targets, and (3) having the best time to reach a target safety

    A collision avoidance control problem for moving bodies in a plane

    No full text

    Parameter identification problems for a class of strongly damped nonlinear wave equations

    No full text
    Parameter identification problems of spatially varying coefficients in a class of strongly damped nonlinear wave equations are studied. The problems are formulated by a minimization of quadratic cost functionals by means of distributive and terminal values measurements. The existence of optimal parameters and necessary optimality conditions for the functionals are proved by the continuity and G\^{a}teaux differentiability of solutions on parameters
    corecore